STAR Plan for Run 11 Stephen Trentalange for the STAR Collaboration # STAR Physics Goals for Run 11 - Spin Physics (p+p @ 500 GeV 10 Weeks) - Longitudinal ($L = 80 \text{ pb}^{-1} \text{ P}^2\text{L} = 20 \text{ pb}^{-1}$) - W A_L at mid-rapidity - Δg from Jets/Di-Jets - DPE and Hadronic Spin-Flip Amplitude - Transverse ($P^2L = 4 \text{ pb}^{-1}$) - π , η , Jet A_N vs x_F and p_T - Heavy Ion Physics (Au+Au, U+U) ## Detector Configuration for Run 11 Some extras: Muon Telescope, Test of GEM Prototype, W-powder SPACAL prototype... ### New ZDC SMD polarimetry #### **Purpose:** - Improve relative luminosity for jet A_{II}. - Study large A_N at forward angles #### Setup: - 6 modules from Brahms and 2 existing STAR modules #### **Status:** - Cosmic test performed - Installed - Rest of system unchanged ### STAR Run Plan: 1-7-2 or 4-6? Transverse Spin: L*p2=4 pb-1 FMS, π⁰ and jets First 4 weeks Criteria Long. Spin: $L^*p^2 = 20 \text{ pb}^{-1}$ W±, jets at midrapidity last 6 weeks \Rightarrow L*p⁴=4 pb⁻¹ # FMS Jet Patch/Cluster Trigger - Four fixed jet patches (JP), each covering $\sim 90^{\circ}$ in azimuth - Maximize the efficiency for the rare, highest energy events - Board sum (BSum) triggers - Approximate capabilities of the current cluster trigger - Provide efficiency for "inclusive ... meson" measurements at lower energies where the JP trigger rates would be too high - High tower triggers - For calibration and diagnostics - Possible di-jet and J/ψ trigger (two non-adjacent JP0 patches) # FMS Run 11 Projections: 20 pb⁻¹ #### Projected η SSA Errors for 20 pb⁻¹ Asymmetry vs Feynman X_F (Projections for 6 Gev/c < p_T < 9 GeV/c) ### Dijet Correlation Measurements - Reconstructing multiple physics objects (di-jets, photon-jet) provides information about initial parton kinematics - STAR well-suited for correlation measurements due to large acceptance $$x_{1} = \frac{1}{\sqrt{s}} (p_{T3}e^{\eta_{3}} + p_{T4}e^{\eta_{4}})$$ $$x_{2} = \frac{1}{\sqrt{s}} (p_{T3}e^{-\eta_{3}} + p_{T4}e^{-\eta_{4}})$$ $$M = \sqrt{x_{1}x_{2}s}$$ $$\eta_{3} + \eta_{4} = \ln \frac{x_{1}}{x_{2}}$$ ### Dijet Cross Section and Asymmetry #### Di-Jet ALL Projections #### Shown $LP^4 = 24/pb$ In Run 11 expected ~5/pb STAR Spin Plan Run11 Jan Balewski, MIT 10 60 70 80 M [GeV/c²] 50 60 70 80 90 100 110 M [GeV/c²] # Single Spin Asymmetries for Ws $2009 (LP^2 = 1.8 pb^{-1})$ $$(LP^2 = 25 pb^{-1})$$ # Summary: Plans Unchanged since Last Update - STAR plans for 10 weeks of polarized pp - Transverse/Longitudinal $\sim 4/6$ or 1/7/2 - Improved ZDC luminosity monitoring/polarimetry - W Asymmetries for antiquark spin pdfs - Jets/Dijets for gluon $\Delta G / \Delta g(x)$ - Forward Physics: Sivers/Collins Quark Orbital Angular Momentum